304 research outputs found

    Dynamical systems analysis of spike-adding mechanisms in transient bursts

    Get PDF
    Transient bursting behaviour of excitable cells, such as neurons, is a common feature observed experimentally, but theoretically, it is not well understood. We analyse a five-dimensional simplified model of after-depolarisation that exhibits transient bursting behaviour when perturbed with a short current injection. Using one-parameter continuation of the perturbed orbit segment formulated as a well-posed boundary value problem, we show that the spike-adding mechanism is a canard-like transition that has a different character from known mechanisms for periodic burst solutions. The biophysical basis of the model gives a natural time-scale separation, which allows us to explain the spike-adding mechanism using geometric singular perturbation theory, but it does not involve actual bifurcations as for periodic bursts. We show that unstable sheets of the critical manifold, formed by saddle equilibria of the system that only exist in a singular limit, are responsible for the spike-adding transition; the transition is organised by the slow flow on the critical manifold near folds of this manifold. Our analysis shows that the orbit segment during the spike-adding transition includes a fast transition between two unstable sheets of the slow manifold that are of saddle type. We also discuss a different parameter regime where the presence of additional saddle equilibria of the full system alters the spike-adding mechanism

    Evidence for water-mediated mechanisms in coral-algal interactions

    Get PDF
    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macro algae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation

    The effect of depth on the morphology, bacterial clearance, and respiration of the mediterranean sponge chondrosia reniformis (Nardo, 1847)

    Get PDF
    To support the successful application of sponges for water purification and collagen production, we evaluated the effect of depth on sponge morphology, growth, physiology, and functioning. Specimens of Eastern Mediterranean populations of the sponge Chondrosia reniformis (Nardo, 1847) (Demospongiae, Chondrosiida, Chondrosiidae) were reciprocally transplanted between 5 and 20 m depth within the KaŠ-Kekova Marine Reserve Area. Control sponges at 5 m had fewer but larger oscula than their conspecifics at 20 m, and a significant inverse relationship between the osculum density and size was found in C. reniformis specimens growing along a natural depth gradient. Sponges transplanted from 20 to 5 m altered their morphology to match the 5 m control sponges, producing fewer but larger oscula, whereas explants transplanted from 5 to 20 m did not show a reciprocal morphological plasticity. Despite the changes in morphology, the clearance, respiration, and growth rates were comparable among all the experimental groups. This indicates that depth-induced morphological changes do not affect the overall performance of the sponges. Hence, the potential for the growth and bioremediation of C. reniformis in mariculture is not likely to change with varying culture depth. The collagen content, however, was higher in shallow water C. reniformis compared to deeper-growing sponges, which requires further study to optimize collagen production.This research was executed within the Connected Circularity program, financed by strategic funding of Wageningen University and Research and the knowledge base of the Ministry of Agriculture, Nature, and FoodQuality (KB40), and was part of the ERA-NET project Biogenink (project 4195), funded by the EuropeanCommission in conjunction with the Dutch Science Foundation NWO and the Portuguese Foundation for Science and Technology (FCT) (project M-ERA-NET-2/0022/2016)

    Bifurcations of the global stable set of a planar endomorphism near a cusp singularity

    Get PDF
    The dynamics of a system defined by an endomorphism is essentially different from that of a system defined by a diffeomorphism due to interaction of invariant objects with the so-called critical locus. A planar endomorphism typically folds the phase space along curves J0 where the Jacobian of the map is singular. The critical locus, denoted J1, is the image of J0. It is often only piecewise smooth due to the presence of isolated cusp points that are persistent under perturbation. We investigate what happens when the stable set Ws of a fixed point or periodic orbit interacts with J1 near such a cusp point C1. Our approach is in the spirit of bifurcation theory, and we classify the different unfoldings of the codimension-two singularity where the curve Ws is tangent to J1 exactly at C1. The analysis uses a local normal-form setup that identifies the possible local phase portraits. These local phase portraits give rise to different global manifestations of the behavior as organized by five different global bifurcation diagrams. © 2008 World Scientific Publishing Company

    Confirmation of Clinical Diagnosis in Requests for Prenatal Prediction of SMA Type I

    Get PDF
    The recent discovery of a major SMA-locus in the chromosomal region 5q makes it possible to carry out prenatal DNA studies in families in which a child with SMA type I has been born. Since direct mutation analysis is not yet possible, the reliability of prenatal prediction of SMA type I usually depends on the certainty of the clinical diagnosis in the index patient. Sixteen requests were received for DNA studies in couples who had had a previous child with SMA type I. After re-evaluation, the performance of prenatal diagnosis was rejected in four cases. Among the other twelve families prenatal DNA analysis of chorion villus biopsies has been carried out in three families. In all three cases the fetus had inherited the high-risk haplotypes from both parents, and the parents chose to terminate the pregnancy. An illustration of the prenatal DNA studies in one family is given. The importance of confirmation of the diagnosis SMA type I before performing DNA studies is emphasised

    Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels

    Get PDF
    Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion
    corecore